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By Herbert S. Ribner

SUMMARY

A number of conical and quasl-conlcal linearized supersonic
flows have been derived. These flows may be epplied in lift-
cancellation techniques in the determination of wing-1ift dis-
turbances that arise at subsonic trailing edges. Some of the
results are applied to damping in roll and piltch in another paper.

Two methods of analysis have been employed, both involving
integrel equations. One 1s a development of the membrane method
of Evvard; the other ls an analog of the superposition method of
Schlichting. In both cases, source distributions are used. The
mathematical equivalence of the first method and & new doublet-
distribution method of Goodman and Mirels is shown.

1

INTRODUCTION

The analysis of the flow over & sweptback wing (reference 1)
mekes use of Lagerstrom's concept of 1ift cancellation (reference 2).
The starting point is a delta wing of infinite chord. Suilteble flows
sre superimposed that cancel the 1ift outboard of and behind a *
certain boundary. This boundary is chosen to constitute the tips
and the tralling edge of the sweptback wing.

The cancellation flows for the wing tip modify the 1ift in the
tip reglon; they are not of concern herein. The cancellation flows
for the trailing edge modify the 1ift in a region ahead of the trall-
ing edge 1f the edge is "subsonic'(that is, if the component stream
velocity normal to the edge 1s subsonic). Now the 1lift distribution
of a delta wing at an angle of attack 1s substantially flat in the
center. (See fig. 1.) Thus, an approximate cancellation behind the
trailing edge would be afforded by a constent 1lift such as flow I in
the figure. (This idea was originated in reference 1.) Correspond-
ing approximate cencellation flows (IIT and IV) for rolling end
pitching motions are also shown in the figure. The derivation of
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these three flows 1s the main object of thils report; the work was
initiated at the NACA Langley laboratory and completed at the NACA
Lewls laboratory.

The analysis leads to integral equations, some with several
apparent solutions. The cholce of the physically correct solution
in each case is determined by comparison with the solution for a
closely related flow that 1s more easily calculated. Thus,
altogether, derivations are gliven for eight flow distributions.
Four of these flows are conical: the velocity components and pres-
sure are constant along any ray from the vertex. The remaining
four are quasi-conicel: the velocity components and pressure are
proportional to the distance along any ray.

The practical application of several of these cancellation
flows in the evaluation of demping in roll and pitch is made in
reference 3. :

CANCELLATTON FLOWS

Each of the elght flows discussed cen be conslidered to repre-
sent a slightly cambered 1lifting surface lying essentlially in the
z = O plene. (All symbols are defined in appendix A.) Thus, the
u and v velocities are antisymmetric with respect to the z = O plane,
and the w velocity is symmetric. With these reservations, the
boundary conditions can be specified for the upper surface only.
(This simplification is employed throughout the report.)

The flows contemplated for the partial cancellation of the
1ift behind the trailing edge are schematically deslgnated in
figure 2 for the several cases. A particular cancellation flow
(any one of I to IV, fig. 2) is superposed on the sweptback wing
go that the w = O regions lie ahead of the tralling edge and the
gshaded region lies behind. The 1lift, and hence the u velocity, is
specified in the shaded region, and this specification determines
the 1ift cancellation. (See fig. 1.) The specification w = O for
the part-of the flow overlapping the wing ensures that the
resultant flow shall be tangent to the surface of the wing; the
basic delta-wing flow already provides the correct value of upwash w
on the wing (for exsmple, -aV for angle of attack) and the cencel-
lation flow must therefore add none.

The u velocity of the cancellation flow in the regions w =0
ig algebraically additive to that of the basic delte flow there.
This additive u velocity corresponds to a pressure disturbance caused
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by the wing trailing edge. The central problem of this report is
the determination of the u velocity for each of the cancellation
flows I to IV from the boundary conditions stated in the preced-
ing paragraph.

In the integral-equation method of solution as applied herein,
geveral solutions may be found for certain of the integral equ-
ations. Unique solutions cen be obtained in each case, however,
for a flow that 1s closely related to the desired flow. The
correct solution for the desired flow mey be identified by a com-
parison of the nature and the locetion of asingularities in the two
flows. The identification is made more convincing by a guanti-
tative comparison of the u velocity over the reglon of interest in
addition to a conslderation of the singularities.

Ths in flgure 2 flows I to IV are the deslred flows and flows
I' to IV' are the respective reldted flows. The boundary conditions
for the desired and related flows differ only in the presence or
absence of a left-~hand w = O reglon. Because of the relative remote-
ness of the left-hand reglon, conditions in this region may be
expected to affect but slightly the u velocity induced in the right-
hand w = O region, so long as that region is relatively narrow. With
this limitation the u velocity in the right-hand w = O region cal-
culated for flow I', then, is presumed to be a good approximation to
thet for flow I, and similarly for the other pairs of flows.

It will be convenient to obtain first the solutions for the
related flows I' t0 IV' so that they will be available to aid in
identifying the correct solutions for flows I to IV, regpectively.
Flows I' to IV' require only a simple inversion of an Abel-type
integral equation. Flows I to IV require a more elaborate procedure.

Flow I'
(For Angle of Attack)

To flow I' (fig. 3) the w velocity (or surface slope) is
prescribed in region A, but not the u velocity (or 1ift). The
u velocity is prescribed in region B, but not the w velocity. If
the w velocity were known in region B, this wing would be of pre-
scribed cember. According to Puckett (reference 4), the wing
could be represented by a distribution of sources in proportion to
the local value of w. The unknown u velocity in region A could
then be obtained by simple integration and differentiation. The
gource representation can still be used, however, even though the
disbtribution of w in region B is unknown. In this case the pre-
scribed conditon on u in region B will glve rise to a soluble
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integral equation for the unknown w distribution. This procedure
igli. development of Evvard's method (reference 5). The details
follow, :

The surface u velocity is given in reference 5, equation (3a).
In slightly modified form, and in the present notation, it is

ow
@dﬁl o | aw(an-agy)

NEE) (o) 2P | A iEt) ()
S c

u(g:ﬂ) = = n}ﬁ

The oblique coordinates of reference 5 (Mach coordinates) are employed.
(See fig. 3.) Unsubscripted values refer to the field point, sub-
scripted values to the source point. The transformations relating
(x,y) amd (,n) are

X = 5. (n+£) £ = é%- (x-By)
' . (2)
By = f—; (n-£) = 51-43— (z+By)

The surface integral is taken over the area S bounded by

the forward Mach cone from the point (£,7). The line integral is
taken along any lines within S or bounding S across which the

w veloclty experiences a Jump Aw. The t -axis and the line 7 =7 ¢
(fig. 3) might be such lines. Consider, however, the requirement
-of general similarity with flow I. The Imposition of the Kutta
condition at the trailing edge of the wing in figure 1 requires the
continuity of W across the boundaries 7 =T{ and £ =™ of the
sheded region of flow I, as sketched in figure 2. For flow I', w
mist similerly be contimious elong the right-hand edge of the shaded
region (n =Tt). Also, the contimuity of w across the t-axis
(Mach lime) can be shown to be a consequence of the finite 1ift along
that line. The line integral in equation (1) accordingly vanishes
for flow I'. - :

Let the point (£,7) be located at P (fig. 3); P repre-
gents an arbitary point in region B. Then the forward Mach cone
inocludes the shaded area in region B and an ad Jacent unshaded area
in region A. The guantity Ow/dx; = O in region A; therefore,

only the shaded area contributes to the surface integral.
Equation (1) may thus be written
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n o ¢ /dw at
20T aM
‘Vn- l\/ﬁ-ﬁ
0 it e 1

The unknown inner integral, mmltiplied by 1/nM, may be designated
J(E,nl), which glves

! J(E,m)an,

u(t,n) = - —T"_T-
'

0

region B (4)

Equation (4) is an Abel-type integral equation for the unknown
function J(§,n;). Its solution is given (reference 6) by

M
Jle,m) = - = 5'% alanldn (5)
0 - ‘\’Tll Ui

(The more general treatment of Abel's integral equation in refer-
ence 7 implies that equation (5) will provide singular as well as
contimous solubtions. The only important restriction is that

u(t,n) mst be such that the integral on the right-~hand side of
equation. (5) is continuous. In reference 6, however, certain
additionsl restrictions are placed on u(f,n) to limit equation (5)
to contimuous solutions. In the present report, these additional
restrictions are disregarded and singular solutlions may be expected,
as in equation (6).)

In the present cese the function u(%,7) is a constent u,
(fig. 3). The solution for J is therefore

. =Q

I(tm) = —= (6)
L '

TNow let the general point (£,n) be located in region A
at Q@ (fig. 3). The only change in the expression for u
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(equation (3)) is in the upper limit for Ty . This upper limit is

now at the intersection of the line PQ with the line 7 =7TE.
Accordingly,

T¢
q(g’nl)d'nl

(£,n) = - —_—
u ] i I\Iﬁ

The value of J already obtained in equation (6) applies here as
well as in equation (4). Upon making the substitution,

region A : (7

T¢ .
e h
u(€,n) = ————/\[——2
1M -1
0 ARally]
2u
= _ﬂ_O_ gin™t A "_Tﬁg. region A (8)

Tt will be convenient to reexpress the result of equation (8)
in terms of the conical coordinate O= By/x. Along the line
7 = 7t , the coordinate O is glven the value n. The transformation

23% x(1-0) A

e
]

M

1 =55 x(1+0) (9)

~

1+n

S-S

-
|

then yields

- -0
a(o) = =2 s\ (RS @eosd) (10)

(10) glves the hitherto unknown u velocity in region A

Equation
The w velocity in region B is still unknown. This

of figure 3.
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w veloolty will not be needed in the present investigation, but
the method of solution is given In appendix B as a matter of
interest. |

Flow IT'
(Special)

The development leading to equation (S5) in the treatment of
flow I' leaves the boundary condition on u as yet unspecified.
The development end the equation are thus sufficiently generesl to
be applied to any of the flows I' to IV'.

The present case is complicated by discontimuity in the
u velocity across the x-axis (fig. 4). The point P = (€,n) mey
lie in either of the regions By or Bp. The corresponding

golutions for J(£,n;) from equation (5) will be different; call
‘them Jl(ﬁ;ﬂl) and Jz(ﬁ,nl), respectlvely. The conditions on

u(t,n) are

u(t,n) = g 0<mn < t region By
u,n) = g £ <n < Tt region B,
Then
m
19 =ugdn
J. () = - = :
1> s Ony o
c
. ¢ m
d duodn uodn

1
Jz(g:ﬂl) = - ;'BEI Vﬁijﬁ Vﬁi:ﬁ

o
e




8

The results are

'Jl(g:rll) =

Jf(gv)—l-2
27 = T\ Ny At

NACA TN 2147 o
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Yo
AT
& (1)
o)

J

Equetion (7) is, like equation (5), applicable to any of the
flows I' to IV'. For flow II' the appropriate function J(€,m;)

is. Jl(f.,nl) in the range 0 < 1 < £ and Jz(ﬁ,nl) in the

range £< n< TE.

u(g:"])

"

Therefore
¢ TE
:\’n-n '\f’l"ﬂ
Jo . 4 *
[ Pt T¢
u dm ) dn; .
U -—--——-—2 + 2 -
P4
’\lnn - , \f('l'ﬂ ) (ny-¢)
o il T ¢ ARG
_
2_112 - cos™t S———-HZT-J‘ En | sin-ll\F-g- reglon A
T " n- 1

Tn terms of the conical coordinate O = By/x - this equation is,
after the transformation equations (9) are applied,

2u 1
0 -1 2n-0{l+n -1, (1) (1-0
u(o) = - | * - cos _OT({:ITL - gin ) (110 (12)
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Equation (12) gives the u velocity in the w = O sector

(n< 0< 1) of flow II' (fig. 1), which is zone A of figure 4.

Flow II1'

The appropriate value of u to be substituted in equation (5)

is, from figure 2,

u = Ky
or
w =& (1)
80 that
T
K O "~ (n=-)dn
I(,m) = - 51 Sy
1 ‘Vﬂl‘ﬂ
0 .
2m -t

Insertion of this value into equation (7) gives

4
(2my-8)am

u(ﬁ)ﬂ) = £ ppppsme———
™ o Nhl(ﬂ'ﬂl)

(n >1t)

which Integrates to . .

u(g,n) = i—M'i (n-£) Bin':}\]—lnz - Ti(n*ri):l

(13)

(14)
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In terms of the conical coordinate O= .By/x this equation is,
after the transformation equations (9) are applied,

ulo,x) = 5120 Bin.l\/§1t3 &Zgg \/z(1+n)ﬁ;o)(o-n) (25)

Equation (15) gives the u velocity in the w = 0 sector
(n <0 < 1) of flow III' of figure 2.

Flow Iv'

Refer to figure 2 for the value of u to be substituted
in equation (5):

u =Kx
kg
= 5T (n+§)
Thus
il
KB O t£)d
J(i:ﬂl) = M E-TII LTH-E'}HH
0
__rp Zmrt (16)
M m :

Substitution of this value

u(t,n) - ﬂ-g-

"he integration ylelds

u(ﬁ;'ﬂ) =

in equation (7) gives

T4
(2 T]1+§ Jany

M (1-m

n+t) sin” \]——TE— '\‘Tt(n- :\

(n > 7E)

1

1317
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In terms of the conical coordinate O = By/x +this equation is,
after the transformation equations (9) are applied,

u(o,x) = %— 2 sin™t %‘:zg 8;3 - Na(n) l(l:;q) (O-n)] 17)

This equation gives theesu velocity in the w = 0 sector
(n< 0<1) of flow IV' of figure 1.

Flow I
(For Angle of Attack)

Flows I to IV differ from flows I' to IV', respectively, in
the specificatlon of & left-hand sector w = 0 +to match the right-
hand sector (fig. 2). The solution can no longer be obtained by
the simple inversion of an Abel~-type integral equation. Resort 1s
therefore made to a different integral-equetion formulation in
which adventage is taken of the conlcal nature of the flow. The
method is an analog of the superposition method of Schlichting
(reference 8). .

According to the considerations developed in the discussion of
flow I', flow I may be represented by a sultable source distribution.
At every point the required source strength 1s proportional to the
local value of w. Thus the source strength is zero in the two
outside sectors. (See fig. 2.) In the central sector w is
unknown, but there is a condition on the u velocity. The source
distribution there must be so chosen that this condition on the
induced u velocity is met. The formulation of this condition gives
rise to an integral equation for the unknown source distribution.
A convenient form of integral equation is obteined as follows: The
source distribution over the region u = ug 1is considered to be

obtaineéd by superposing uniform sectors of infinitesimal strength
apd different lateral extentrfoi. Section A-A of figure 5 illus-

trates such a distribution. The strength of an elementary gector is
given by - '

Awn-a%"l_dol ©4>0)
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Each elementary source-sheet sector induces a certain infinitesi- B
mal u veloclty and the total u velocity is glven by the integral.

Tals integral must be equated to the prescribed u velocity shown

in figure 5. The result is the desired integral equation for the

unknown distribution strength aw/acl.

1317

The infinitesimal u velocity induced by an elementary source-
sheet sector extending from -0y to O can be obtained from

reference 4 (equation (31)). In the present notation it is
L J

1- l+0. 0

o ()

su(o) = - ;%E — 2+ | cosn™ % + cosh™ 1 (18)
l-ciz CRE | |o+cll

where an .absolute value sign has been ad.déd. to the denominators of

the cosh™ +terms. With the absolute value sign, egation (18)
applies both for [o| <o, and for|o| >0y; whereas in reference 4

the two cases are separately covered in equations (31) and (33);
respectively. (The same expression results from the aeddition of two
oppositely swept line sources of the acceleration potential. See
reference 9, equation (12).) ’

The total u velocity induced by the superposed source-sheet .
sectors is
n
1~ 1+

1 ow 91 179 -1 9

u{o) = —= ———— cosh™" ——==— + cosh =~ =—=— |40
©) =15 J 1 Vot =] el )
, 1-0)
0 .

(19)

If u(0) is put equal to the specified value u, 1in the range
|o| < n, then equation (19) represents an integral equation for
the derivative ow(0y)/d0y of the unknown source strength. This

equation as it stands is too complex to be useful. Great simpli=-
fication results, however, upon differentiating both sldes with
regpect to O

aw .
5@01101

n
g& _ 2 i
o 2
%B l\’l-—c2 o 0 _02

(20)
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(The Cauchy principal value is to be taken for the integral.) In
the range |0l < n, u/d = 0. The following less formidsble
Integral equation is thus obtained:

n ' i

Oo1
50,

—5—d0; =0 |O|l<n (21)
0,2-c?

2
The substitution +3 =07 , t = 0 reduces equation (21) to a
special case of

b
£(tq)at
~ - el®) (21a)
8 N

The integral equation (2la) is well known from incompressible thin-
alrfoil-section theory, but the usual inversions yleld only the
trivial solution f(t1$ =0 for g(t) = 0. A nontrivial solution

of equation (21) for ow/d0; has beén suggested by C. E. Brown of
the NACA Langley laboratory. Put

2 Y
F = E'-2--(1 - cos B)
2
0,2 = %r (1 - cos 8) ) (22)
ow__ cf(8) (C = unknown constant)
53; = , /

Then equation (21) becomes

5T

£(0) sin 6 46 -0 2%
cos 6 - cos & . (23)
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Now according to reference 10

A3t
ae o
cos 8 - cos &
0
vhence a solution of equation (23) is
£(6) = osc 6
or (24)
ow
= C osc B
30y

The question of uniqueness is deferred until later; in the meantime
equation (24) is considered as the physically correct solution.

Equetion (24) cerries the solution for ow/ d0; far enough to

enable the determination of u. Thus, equation (20) is still valid
in the range n <|0] <1. In this range ou/00# C, =and

equation (20) may serve for the eveluation of u. The transformation
from g, to 6 (equations (22)) is again convenient. (The trans-
formetion from O to ©® 1s not used as it leads to cos & > 1.)

The result is

7
ou co £(6) sin 6 46
- - 00 __ <loj< 1
3G NEW 2 nel¥ls
apN\1-F 20__31 +cos @
n2
0
‘and with f£(8) = csc @
P
g_u. = -_2FCo ' d? n<loj< 1 (25)
° BN 1-c° ‘.2_9.2_-l+c089
nZ

0

1317
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This integral is evaluated in reference 11 (table 64, equa'bion (12)).
The result is

Cnéo
28 |0ly/(1-c?) (02-n2)

%15=~ n<iol <1 (26)

For purposes of integration, © may be restricted to the positive
range so that <3/|0| = 1; the resultant lutegral will be applied
for both the positive and the negative value of O because of the
symmetry of the flow in 0. The elliptic-function substitutions of
appendix C are helpful in this and other more difficult integrations
of the same nature in this report. The integral of equation (26)
between the limits G and 1 1s found to be

u(o) = —B- F(®,k)

vhere F 1s the incomplete elliptic lintegral of the first kind
with modulus

k = l-nz

and amplitude

=1 1-0z

® = s8in —_—
l-n?

The constent C is esteblished by the condition that u(n) = U,
so that finally

F(p,k)

*(5) -

- u(o) = u,

Equetion (27) is a solution for the u velocity in the out-
board sectors n <O <1 of flow I in figures 2 and 5. Equetion (27)
is not a unique solution of the integral equation (21), end it remains
to be shown that it is the physically correct solution for flow I.
The singulerities in Ou/d0, equetion (26), may be compared with
those in the corresponding result for flow I', obtained by differenti-
ating equation (10). In both cases half-order singularities are
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found at O = n+ and 0=1 (that is, |du/d0| approaches infinity

as (G-n)"l/2 when O approaches n from above (designated by
n+) and there 1s a similar behavior as O approaches 1). The
quantitative comparison of equation (27) with the corresponding
solution, equation (10), for the right-hand sector of flow I’
(figs. 2 and 3) is even more convincing. The two solutions are
plotted together in figure 6 for n = 0.707. The agreement 1s so
close that the two gets of points seem to define & single curve, the
uppermost curve of figure 6. (Other calculations for the point
defined by @ = 60°, plotted in fig. 7, confirm the expectation
that this close agreement becomes progressively impalred as n is
chosen sm?ller and smaller. The error is within 5 percent down to
n = 0.32. '

Equation (27) is the correct solution for the "symmetrical
wake correction” of reference 1. This result has been incorporated

in an erratum sheet thereto.

Flow 1T
(Special)

Flow IT has more academic than practicel significence. It
could be used in the determination of the loadlng on special allerons
t0 cancel (epproximately) the loading in the wake of a sweptback wing
with the ailerons deflected. These ailerons would be full span, or
located inboard if part span, with a vertical fence at thelr Juncture
t0 isolate the two ahead of the region of tralling-edge disturbance.

Comparison of the.specifications of flow IT and flow I in
figure 2 shows that II is antisymmetric whereas I is symmetric. It
ig therefore necessary to use antisymmetric source-gheet sectors in
the superposition process, rather than the symmetric sectors used
for flow I. The change is effected by simply changing the sign of

the second cosh™l term in equations (18) and (19). The equation
corresponding to equation (20) then becomes

n
% 0,%a0, o
g'lc‘f 2 1 > 02____ (28)
n{ - S5 iy
N1 02 0

1317
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(The Cauchy principal pert of the integral is to be taken.) The
integral equation that results on setting ou/d0= 0 is thus

a
%‘*’G.I 0,240, |
0,2

{

0]

0 [6l<n (29)

in place of equation (21). Equation (29) is of the same form as
equation (21): Ow/d0; is replaced by Oyow/00; as the unknown
According to eguation (24), a solution of

equation (29) therefore is

function of © 1°

W

33;01 =C csc 0 . . (30)

in terms of the function 6 defined in equations (22).

For the determination of u,

the solution equation (30) is

1

2
substituted back into equation (28) with 0.2 = n.z_ (1 - cos 9)

as in equation (2

du

C
B g | 2d
2
0

2). There 1s obtained ‘

b1

ae

n

n<|o] <1
1l 4+ cos ©

This expression for Bu/ao differs from equation (25) only in
the lack of a factor O outside the integral sign. Comparison
with equation (26) btherefore shows that the result of the inte-

gration must be .

en?
1-0?)(02n2)

_
3 " zpjola(

n<|o] <1 (31)

e e e e S ————— e — =
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This function is readily integrated with the aid of the elliptic-
function substitutions of appendix C. (The absolute value sign is

temporarily ignored.) The integral from G to 1 can be expressed

in the form

2 2
u(o) = 88 - gogt (im )o® 2n n<lolgl
6 ol R

where the sign factor ©/|0| has been appended in order to provide
the antisymmetry of u in 0 indicated by equetion (31). The
constant C 1s established by the condition u(n) = uy, so that
finally .

o 242 o2
u(o) = 2 9 cog™t (1+n®)0”-2n n<|oj<1 (32)
= <0<

o | ~ (1-n?)0?

v

Equation (32) is the solution for the u velocity in the w =0
sectors of flow IT (fig. 2). As before, the solution is confirmed
by comparison with the solution (eguation (12)) for the related
flow II' of figure 2, with attention to the singularities in ou/d0.
The two solutlions are plotted together in figure 6 for n = 0.707.
Agein, the egreement is such that the two sets of polnts seem to
define a single curve, the second from the top in the figure.

Flow III

The boundary conditions (fig. 2) show that flow III cannot
be conical like flows I and IT, but must be gquasi-conical. That
is, the velocity components are not of the form u = F(y/x) and
w = G(y/x), but are rather of the form u = xF(y/x) and
w = xG(y/x). The flow is, however, antisymmetric like flow II.

A flow of this type can be built up (compare treatment of flows I
and IT) hy superposing elementery source-sheet sectors that have a
strength variation proportional to y or, what amounts to the
same thing, to xO. '

]

An example of how an erbitrary antisymmetric quasi-conical
w veloclty distribution of the form

W(cl) = mlf(cl) (33)

1317



LTET

NACA TN 2147 19

can be buillt up by such sheets is shown in figure 8. (Compare
fig. 5, section A-A.) The strength of an elementary sheet is
characterized by the strength parameter

af
Af == d.cl d.O'l

The incremental u velocity induced by an elementary sheet for
which

&
]

(constant) Byy

]

(af) %03

can be derived by standard methods (for exemple, reference.5).
The expression is

B
CE
1 .
=-—3 U(c,ol) a0y (34)
whexre
0,2 ] 1+0.0 1-0.0
- - =1
U(G:Ol) E_'ﬂé- (l-lOlO) cosh 1 = io - (1-010) cosh > lo
n(1-0,2) |o1+0] |01-0]

i
The total value of u ocontributed by the superposition of all the
contemplated sheets 1s given by
a n

x | ar

u(x,0) = - 7 30y U(O,ol) doy (35)

0]

Now u(x,0) 1s specified over the shaded area (|0| <n) of
flow IIT in figure 2. Thus, equation (35) represents an integral

e e e e e e e e e e e —n
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s

equation for the unknown function df(c;)/d0;. The kernel
U(0,0;) of this integral eguation is quite complex. The second
derivative of U(C,0q) with respect to O has, however, the
mch simpler form

BZU(G s01) . 400 13

Y NN =]

This simplé'function would then be the kernel of the integral
equation obtained by differentiating equation (35), provided that

the right-hand side of equation (35) could be differentiated under -

the integral sign wlthout regard for the singularity - O1=0.
It 18 clear that such a procedure would be Invalid in this case
because for [0| < n +the kernel would have a second-arder pole
within the range of Integration.

H. Mirels of the Lewis laboratory has, however, pointed out
that 1f the differentiation were conducted properly the result
might be written in the form’

%

o
3
u I ar . %% a0y (36)

.z
P ] W 1 (0,2-FV \1-F
0

&l

[~n
The symbol signifies that the indefinite integral evaluated

Jo

at 0y= 0 1s to be subtracted from the indefinite integral
evaluated at O, = n. Defined in this way, the integration can

be carried out without-difficulty, inasmch as the integrand 1s
regular in the neighborhood of the limits.

The formulation of equation (36) is a special case of a
theorem that may be briefly stated as follows: If the function
f(x,t) hes en "integrable singularity” within the interval of
integration, then, under rather general circumstances, the equation
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b fb
o rmpate 4 Loe(xbat (p4)
P axP

a a

is correct. A general discussion and proof of this theorem 1s

provided in appendix D by F. K. Moore of the Lewls laboratory. .
The prescribed condition on u in the range |0| < n 1is

(flow IIT, fig. 1):

u =Ky “}
_hxg
T B
or 5 [0l <n
Pu
Cx_o
3 J

Application of this condition to equations (35) and (36) ylelds
the two alternate integral eguations for df(s;)/doy

n

KO = % U(c,0, )ao ‘ (37)
O s
‘ > [o] < n

n 3
0= f ag 71 a012 (38)
4% . 2. R
]o -

Attention will be centered on solving the simpler of the two
equations, (3@). :
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It 1s convenient to write equation (38) in the form

n
[‘ g(01)0d9 _

I= 3

(39)

where

80) = g5 &% (40)

is regarded as the unknown functlion. Then equation (39) will Dbe
golved if any choice of g(ol) can be found that will cause the
integral I to vanish.

The transformation

g(0;) = Cnn(0)
2.2
q“-1 J
converts equation (39) to
Jjﬁ/? '
2
I = c(1-¢%) n(6) sin 6 cos 6 a6 (42)

(sin® 6 + q2 cos® )2
0

Certain similarities to integrels 14 and 15 of reference 11, table 48,
suggest

h(6)

tan 6 ' ) (43a)
h(e)

]

cot 6 (43Db)
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as possible solutions of equation (38) or (39). Both functions
are found upon substitution and Integration to satisfy the
equation. Any linear combination of solutions (43) is also
clearly a solution. Thus, the integral equation (38) does not
have a unique solution.

The later identification of equation (43a) as the physically
correct solution 1s anticlpated at this point. Then the u veloclty
in the w = O regions of flow IIT may be evaluated as follows.
Equation (36) can be written

302 :tB",l—Oz
where I is the integral defined in equation (39) or equation (42).

With the solution equation (43a) substituted in equation (42), the
integral I has the value (reference 11, table 48, integral 14)

(44)

I-= C(l-qz)z 425 n<|oj< 1 (45)

" But according to equations (41)

(e)
q =
0.2 2
-n
whence
4
b1 Cn
I=+= n<|o] <1
4 2 3/2 S
o(0%-n?)

and, upon returning to equation (44),

Fu _ Cn4x

A 5(o2- 2)5/2“’1-02

n< ol <1 (48)
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"t

The u velocity in 'bhe region n <0 <1 results upon inte-~
grating equation (46) twice between the 1Imits O end 1. This
integration may be effected with the ald of the ellip'bic-in'begral
substitutions of appendix C, and the resul'b 1s

l-nz
u(O’:x) = B( l-n { E(CP;k) 43 F(CP: Z‘J ) gin 2@

-1 /1-02
= gin —_—
P 1-n2

k = l-nz

where

The value of C 1is established by the condition that .
u(n,x) = Ky = knx/B. The negative range of O (-1< 0 < -n) is
taken care of by introduction of the antisymmetry factor o/ O] .
These operations yleld the final result

1on®
IGI IEE(CP,k)-n F(CP,k):I n sin 29
<|lol <1

|o| B \ E(gvk> R F(gu%% | n<|0] <

(47)

u(o,x) =

Equation (47) is the solution for the u velocity in the w =0
sectors of flow ITII (fig. 2). This equation results from the choioe
of equation (43a) among the solutions of the integral equation (39).
The correctness of this choice is determined by comparison of
equation (47) with the solution eguation (15) of the related flow IIT
of figure 2. Both equations exhibit a half-order singularity in
/00 at O =n+ together with u/do=0 at 0=1.

(Equation .(43b), on the other hand, leads to a different behavior.)
Equations (47) and (15) are plotted together in figure 6 for

n = 0.707. Again, as for flows I and I' and. IT and IT' the agreement
is such that the two sets of points lle on a single curve, the

bottom curve in the figure. The degree of agreement as a function ’
of the parameter n for the ray defined by @ = 60° is shown in fig-
ure 7. The error is within 5 percent down to n = 0.4.
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Flow IV

The boundary conditions (fig. 1) show that this flow is quasi-
conical like flow ITI. That is, the velocity components are of the
form u = xF(y/x) and w = x6(y/x). The flow is, however, symmetric
1like flow I. A flow of this type can be built up (compare, treat-
ment of flows I end ITT) by superposing elementary source-sheet
sectors that have a strength variation proportional to =x. These
sheets are arranged In the same manner as the corresponding constant-
strength sheets employed for flow I. (See section A-p, fig. 5.)

Let the source strength of an elementary sheet sector be
specified by

= (Af) x

where Af 1s a constant for a particular sheet and the sector
extends from 0 = ~03 t0 0 =0;. The incremental u velocity

induced by such a sheet has been calculated by ‘the method of
reference 5 and the result is

AP )
= TW(I,O’,OJ_) (48)
\
where
l-0.0 1-0y0
pee]
W(x,0,04) = 1 2‘\/1-02 - il cosh™L a -
20,07 3
% (1-0,%) l-clz |o1-0]
1+0,0 l+ov 0
- L coxs;h":L ! )—-
\}l-OJ_Z |°l+°|
x
A cosh™ a1 + GOBh-l l+f:10-
Nt o] T foxe]
Mach

e e e e e e ——— e [p— e ¢ e v e =
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(The integral was not evaluated inesmch as only'the x-derivatives
of W will be needed in the applications herein.)

The individual sheet-strength parameter Af ocan be expressed

so that

The total value of u contributed by the superposition of all the
contemplated sheets is then

n

1 af
u(x,0) = - § d,—g—lw(x,o,ol) aoy (49)

0.

The development beyond this point runs similarly to that for
flow ITI. Ipasmuch as u(x,0) 1s specified over the shaded area
(lot< n) of flow IV of figure 2, equation-(49) is an integral
equation for the unknown function d£(0;)/d0;. The kernel

W(x,0,07) 1s disagreeably complex, but 1ts second derivative
with respect to x, :
32 ‘40401
- W(x,0,0¢) | =
2 ™2 .
ox y n:x(olz-oa)z ‘\}1-02 .

is relatively simple. The theorem, equation (D4), for differenti-
ation under the integral sign is therefore employed to gilve

n
u _1[ af 4%,

<¥>y i FJO W1 7x(012-F)2 01-F 1

(50)
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[‘n
The integratlion symbol has the speclal significance previousl;

Jo

discussed under flow III.

The prescribed condition on u Iin-the range |[O] < n is
(flow IV, fig. 2)
\
u = KX
or o] <n
32
u
), = °
v

Application of this condition to equation (S0) yields the integral
equation for d:E‘(Gl)/dGl

n grp
B, 0,40,

L ("12"oz )2

=0 ol <n (51)

This equatlion may be compared with the corresponding equation
for flow TIT (equation (38)). Both equationa are of the form of
equation (39), but with different expressions for the unknown
g(04). Thus the method of solution for equation (39) will apply

for equation (51), with

af
8(01) = d’?-l (52)

Once again the proper solution for g(cl) = anh(e) is

found (by later comparison of flows IV and IV') to be given by
equation (43a). This sclution ies now employed in equation (50)

in the range n <0}l <1 for which Bzu/axz does not vanish.
The integral has the value given in equation (45), and equation
(50) becomes
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(f.%) - Cn4gj2 n< |0 <1 (53)
I Bx(cz-nz) ‘\Jl-o2 ‘

Now u 1s known to be of the form (quasi-conical flow)

u = Byf(o) : A
so that
E) - -Fre) = al), wy (54)
u )
21} - - 2¢'0)
(ax2>y =T J

Thus by comparison of equation (53) with the last of equations (54)

—oedo?
gl (0) = Cn 3/2
B(Gz"-nz- 1-02

The elliptic-function substitutions of appendix C are convenient
for performing the integration for g(0), with the limits ©
end 1. Then f£'(0) = -2(0)/02 may in turn be integrated to
yield wu. The result is

u(o,x) = X F((P,k)-E(CP,k)]
B(1-n")
where
Q= gin™t l-d:
l-n

1317



LTET

NACA TN 2147 ' 29

The constant C 18 established by the condition that
u(n,x) = kx
go that finally

F(P,k) - E(P,k)
F(%,k) - E(%,k)

Equation (55) is the solution for the u velocity in the
w =0 sectors of flow IV of figure 2. This equation results
from the choice of equation (43a) among the solutions of the
integral equation (39). The correctness of this choice is deter-
mined by comparison of equation (55) with the solution equation (17)
of the related flow IV' of figure 2. Both equations exhibit a
half-order singularity in ou/d0 at O = n+ together with
u/dc =0 at 0=1, (Equation (43b), on the other hand, leads
to a different behavior.) Equations  (55) and (17) are plotted
together in figure 6 for n = 0.707. Once again, as for the pairs
of flows I and I', IT and IT', and IIT and ITI', the agreement is
sufficiently close so that the two sets of polnts seem to define a
single curve, which is the curve next to the bottom in the figure.
The degree of agreement as a function of the paremeter n, for the

point defined by ¢ = 60° is shown in figure 7. The error is
wlthln 5 percent down to n = 0,27,

u(o,x) =kx

(55)

DISCUBSION

In the foregoling derivations principal attention has been
devoted to the solution for the u velocity (or the pressure dis-
turbance) in the reglons in which it is unknown. The sclution for
the w velocity (or the upwash) in the regions in which it 1s
unknown has also been obtained, although for brevity 1t has been
omitted herein (except in the single example, appendix B). Com-
parisons of the singulerities in the w velocity between flows I
and I', ITT and ITI', and IV end IV', respectively, were made in
addition to the u velocity comparisons mentioned earlier. These
additional comparisons agein showed very close agreement between
each flow and its related flow, in support of the correctness of
the cholce In each case among the solutlons of the lntegrel
equatlons for flows I, ITL, and IV. :

e e e e A ——————— e = - ——— i —_——
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A primary eim of this report has been to provide the analytical
basls for approximating in simple fashion the effect of subsonic
tralling edges on demping in pitch and roll for thin sweptback wings
in a supersonic stream. (See reference 3 for detailed application.)
Accordingly, the main emphasis has been placed on the "desired flows"
I to IV.- The more easlly solved "related flows" I' to IV' were found,
however, to approximate flows I to IV in the regions of interest
much better than had been anticipated. (See figs. 6 and 7.) ' It is
clear from the comparison that a moderate modification of the boundary
condition near the left-hand Mach line (fig. 2) - the distinguishing
feature bebween the unprimed and primed flows - will scarcely affect
the flow In the region near the right-hand Mach line. Thus such a
modification may freely be made to simplify a given problem, and the
solution of the modified flow will apply to the desired flow wlth
engineering accuracy. In particular, the related flows herein may
be used in place of the desired flows if trigonometric functions are
preferred to elliptic integrals.

A general method for the calculation of flows (fig. 9) of
which flows I' and IV' are special cases is included in a paper by
Goodman (reference 12) after the bulk of the present work was
completed. The method and its applications have been simplified
and extended by Mirels (reference 13). The general solution for
the unknown u velocity in the flows specified in figure 9 is given
in elegant form in reference 13. This result, originally obtained
by means of a doublet distribution, may be derived by means of a
development of the present source-distribution method. The unknown
w veloclty may be obtained as well., The detalls are glven in
appendix E as a matter of Interest. -

CONCLUDING REMARKS

The flow over a sweptback wing may be obtained by superposing
on & basic delta-wing flow additional flows to cancel the 1lift
outside the boundaries defining the sweptback wing. The cancel~
lation flow for the trailing edge modifles the 1ift in a region
ahead of the trailing edge if the component of the stream velocity
normal to the edge 1s subsonic. For angle of attack the principal
part of this cancellation flow is conlcal; for rolling and for
pltching the principal part is gquesi-conical, The derivation of
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these and several related conical and quasi-conical flows has
been carried out in this report. For each case the problem was
formilated as an integral equatlion. Some of the resulis are
applied to damping in roll and in pitch in another report.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohlio, February 3, 1950.
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

E(p,k)
F(op,k)

£(6)
£(o)
£(o,)
glo)
gb1)

h(9)

boundary for line integral, as specified in text; also
undetermined constant

pressure coefficient (proportional to u)

incamplete elliptic integral of second kind with amplitude
® and modulus k

incomplete elliptic integral of first kind with amplitude
® and modulus k ,

function defined in equation (22)
function defined in equation (54)
function defined in equation (33)
funotion defined in equation (54)

function defined in equation (40) for flow III, in
equation (52) for flow IV

function defined in equation (41)
integral defined in equation (39)
integral defined in eguation (Bl)

l-nz

Mach number, ratio of stream velocity to veloclty of
gsound. in free stream

value of 0 along side edges of shaded triangular regions
in figure 2

6/n[cF n?

aree-for surface integrel, as specified in text
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0(0,04)

N,v,w

Yo

Au

-
W(x,0,07)

ZyJs2

I,IT
III,IV

TIT!,IV!

funoction defined following equation (34)

disturbance velocity ocomponents along x-, y-, and
z-axes, respectively

constent value of u over prescribed area

Inocrement in u

free-stream velocity

function defined following equation (48)

Cartesian coordinates: x-axis parallel to free-stream
dlrectlon; y-axis horizontal and toward right, looking
upstream; z-axis vertically upward

angle of attack

Y

define;l in equation. (22)

defined in equation (22) for flows I and II, in
equation (41) for flows IIT and IV

constant of proportionality (fig. 2)

oblique coordinates measured parallel to dowmstream Mach
lines, defined by equations (2)

By/x

lin
l-n

1n~1 l:gi
1-n2

desired flows designated in figure 2

(See fig. 3 for geametric significance.)

related flows designated in figure 2
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Jfb

\I special integration sign defined following equation (36)
a .

A primed function signifies the first derivative of the
function with respect to the Independent variable.
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APPENDIX B

EVALUATION OF UPWASH IN REGION B OF FIOW I'

Note that Just before equation (4) there is the definition

4 \
1 <%> b

N = (&1)

"ll/T

J(g)'ﬂl) =

I

Now J 18 a known function, which was evaluated in the course of
obtaining equation (10)., Thus equation (Bl) is an Abel integral

equation for the unknown function aw/axl. Its solution (refer-
ence 6) is s
gl
dw _ oy D J(E,ny)at
= —_— (B2)
&% Byt
ny /T

With the value of J for flow I' (equation (6)) this is, provided
that the integral on the right-hand side is contimious (reference 7),

E
aW‘ .

.M at
&xl ﬂﬁ BEI Vgl-g
Tl]_/T

Mug

n ”ﬂl(gl"ﬂ]_/'r)

ﬁpon dropping the subscripts and converting to Carteslian coordinates
by means of eguetions (2),

o | 2(1m)
& T\ @) (®3)
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The indefinite integral is
v - 20 [2(14n) ,oep-l 2nx-By(l-n
n n | By| (1+n)
Pu -0(1~
- .0 2(1+n) cosh'l 2n-0(1 n! (B4)
i n o] (1+n) ’

Equation (B4) gives w = 0 salong the E-axis (0 = -1) and along
the line 7 = T¢ (0 = n), as it should for flow I'. The constant
of integration is therefore zero and equation (B4) is the required
sog.u'bion for the upwesh velocity w.
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APPENDIX C

ATDS TO INTEGRATION

The more elaborate integrations in this report, leading in
most cases to elliptic integrals, are most easily evaluated with
the aid of the following elliptic-function substitutions, together
wlth the tables of lntegrals in references 14 and 15:

l-oz=ksnu
f\/O‘z—nz:kcnu
O=dnu

40 = -kzsnu cn u du

where : .
u = F(®,k) [not to be confused with the
u velooit;_r__]
¢ = Bj_n"'l %
l-n
k = A|1-n2

k' = l-2=n
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APPENDIX D

DIFFERENTIATION OF INTEGRAIS OF SINGULAR FUNCTIORNS
By Franklin K. Moore

The problem arising in the differentiation of equetion (35)
may be stated in the following general terms: It is required to
differentiate, with respect to a parameter of the integrend, the
definite integral of a function that, though integrable, has a
singularity inside the range of integration such that the definite
integrel of the derivative is not convergent. It is shown herein
thet, subject to certain restrictioms, this differentiation can be
carried out in a simple menner, avolding consideration of the

singularity.

The integral to be differentiated can be written
_ b
. I(x) = f(x,t)at

a

Tt will be supposed that f(x,t) has a singulerity at some poinmt
a< t <b eand is a function such that

¢
(1) An indefinite integral F(x,E) = f(x,t)at may be
found.

(2) The function I(x) is a convergent improper integral that
can be written I(x) = F(x,b)-F(x,a). (See reference 16, para-

graph 169.) Under these restrictions, f(x) may bave an "integrable

singulerity” within the intervel of integration. For example,
£(x,t) = log, |x- 3 I, a < x <b, meets the foregoing requirements
(1) and (2). :

Tt is required %o carry out the following differentiation: .
-

' =& | fmbat = B - 2 Fa) 0
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By definition,
£x,t) = aég- F(x,t)

It is supposed that

(3)AAt the points ¢ = a,b, % [3% F(x,ﬁ):l = %[% F(x,&):, .

In order that this relation be velid, the following restrictions
on F(x,£) in the neighborhoods of E = a,b are required (vef-
erence 16, paragraph 213):

(a) % and %I'g-' exist.

(b) %(g%) is contimious.

It then follows that

) = 5 [Ba; F(x,zﬂ

Thus, provided that

(4) % f£(x,t) has an indefinite integral,

4

% F(x,t) = % f’(x,i)d. o+ g(x)

vhere g(x) is an arbitrary function.
Equation (D1) can then be written

4 . 4
I'(x) = ' Béx' f(x,t)dt+g(x) - Béf £(x,t)at+g(x)

t=b L_ E=a
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b . a8

1@ = | et - | & fiobat (v2)

When the convention introduced in equation (38) is followed,
equation (D2) can be written

['b
Tx) =1 £z, bat (v3)

Je

The result (D3) may be stated as follows: Subject to the
restrictions (1) to (4) on the behavior of the integrand near
the limits, the differentiation with respect to a parameter to
the integrand of a convergent improper integral may be accomplished
by formally integrating the derlvative of the integrand, as though
its sipgularity were not present. :

It is clesr that
b
82

I"(x) = 3z £(x,t)at (D4)

a

provided. that requirement (3) is replaced by the restriction that,

near £=a,b
2
< [% F(x,g)J -5 [—a-x?zé- Pz, gﬂ

Equation (D4) is the relation used in this report.
The foregoing proof may easily be extended to the case where

a anmd b are functions of x, subject only to the additional
requirement that

13
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(5) a'(x) and b'(x) are contimmous, yielding the result
b

I'(x) = b’ (x)£(x,b)-a' (x)£(x,a) +J S s(xtlag (05)
a
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APPERDIX E

GOODMAN -MIRELS GENERALIZED CANCELLATTON FLOW

The generalized cancellation flow introduced in reference 12
and extended in reference 13 is specified by the boundary condl-
tions of figures 9(a) or 9(b), depending on the position of the
line 1 = £(t). Consider first figure 9(a). The flow oan be.
represented, as before, by sources distributed along the surface
in proportion to w. In the Mach coordinates of reference 5, the
surface potential is

n 4
dny. wi by ,
(¢,m) = - . —_— _ ion B (E1)
o(¢,n o Vﬂ-_ﬂl f m regio
£( 9 G(n7)

where (£,q) is located at P in region B, In what follows @
will play essentially the role that u played in the solution
of flows I' to IV'.

Consider next the case of figure 9(b). By virtue of the left-
hand u = 0 region (reference 5), the region of integration for
@(t,q) will not include the area left unshaded in the upper corner.
Tt is found that with the present notation the limits of integration
are unchenged from the case of figure 9(a). Thus equatioch (E1)
applies equally well for the case of figure 9(a) or 9(b).

Solution for u in region A. - Defilne

' 4

wi f
(L) = 5 g gl (22)

-8

G(ny)
go that
1

o(tm) = - J_(Eﬂl_)dﬂ region B (E3)

‘V TN

£(¢)
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Equation (E3) is an Abel integral equation for J. Its solution
is (references 6 and 7)

M
1 3 o(t,z)dz
n

oy »
ey N

Now let the general polnt (E,T]) be located in region A
at Q. The only change in the expression for ® is 1in the upper
limit for M- This upper limit is now at the intersection of

the line PQ with the line 7 = g(t). Accordingly,

(E4)

g(t) )
J M d-'ﬂl
CP(ﬁ:T]) == ’\/7]:]; ’ (ES)
£(t)

The value of J already obtained in equation (E4) applies here
as well as earlier. Upon making the substitution,

g(t) i I "ﬂl
_ 1 ang 9 o(E,2)az o
m(gfn) == - - \FE;:; region A
£(t) | Je()

(E6)

Tl:L‘Z)

g(t) Wil
= -1 any %Kihz)éf. region & (E7)
2 ,\Iﬁ ( 3/2
£(¢) £(¢)

where the sign I designates the finite part of the integral

according to Hadamerd's definition (reference 17).
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The factor 1/ I\/’q-nl, which does not contain 2z, may be

included in a common integrand, and the finite-part sign may be
removed to the outside of the double integral:

g(t) M
1 ?(t,z)az
(E,m) = - 5= any 73 (E8)
‘ N/n-n (n;-2)
£(t) ee) |7

The order of integration may now be reversed with the aid of the
scheme for the limits sketched in figure 10:

g(t) g(t)
(E9)

CP(E’TI) == Elf ( g,z)d.z
£(8) z

d'ql
3/2
q/n-nl (n1-2) /

Evaluation of the finite part of the inner integral yields the
finel result

g(t)

o(¢,m) = M (E,2)dz region A (E10)
% (n-2) \|g(E)~2
£(£)

Equation (E10) gives the surface potential in region A that results
from a prescribed distribution of surface potential in region B.

‘Bquation (E10) is equivalent to equation (15) of reference 13,
which applies to the mirror image of figure 9. (The same equation

wag obtained for a restricted situation in reference 18 (equation (61d)

therein).) According to reference 13, differentiation yields
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g(t)
u(t,n) = Nn-g(€) ' u(t,z)dz )
’ T (n-z) \[g(t) -z
£(2) “ |
S(E) region A
1-g'(£) Pu + v (E12)

—_ —_ dz
2nB Nn-g(t) Ne(t)-z
£(¢)

which is equation (17b) therein. This equatlion constitutes a
general solution for the disturbance in region A regardless of
whether the Kutta condition is imposed along the line 17 = g(t).
It 1s shown In reference 13 that imposition of the Kutta condition
along the line 17 = g(f) modifies the sidewash distribution v
in such a way as to cause the second integral to vanish. (If the
boundary 7 = g(f) of fig. 9 slopes everywhere toward the left,
instead of toward the right as shown, v 1s determined uniquely
by the known u distribution, end the Kutta condition may nob

be imposed.)

The Kutta condition version of equation (E11) (that is, with
the second integral set equal to zero) may be obtained more directly
for cage (b) of figure 9. In this case (including the special
case f£(f) = 0), u may be written in place of ® and w/Oxy

In place of w in equations (El) through (E10); the result is
given in the new equation (E10). This approach at first parallels
and then extends that of equation (3) and the following equations
in the text.

Solution for w in region B.- It 1s worthwhile to complete
the solution of the Goodman-Mirels cancellation flow (fig. 9) by
evaluating the upwash velocity w In region B. This knowledge
of w will be useful in determining the downwash field in the
general vieclnity of the wing - in particular, within a chord length
behind the tralling edge - by means of the cancellation technique.
(A line vortex method (references 19 and 20) ylelds the downwash
farther back more simply, and simple means are known (cited in
references 19 and 20) for determing the downwash immediately behind
the trailing edge.)
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The solution is started by inverting (solving) the Abel
integral equation (E2) with the ald of references 6 and 7:

3] g
a J( ,v"']_']_)d-g
w=M (E12a)
C1 ) 4/
G(n)
3}
M J(§,m )ak
-2 (¢, -5/ )
1
G’(Tll)

The solution for J has already been determined in equation (E4).
Changing 2z to 17 therein gives

J(E,my) = -lgla—l-f ’\/_  (£132)
£(¢)

J iﬂzﬂl_}_ ’ (E13)
-n)
£(€)

Substitution of equations (E13a) and (E13) into equetions (El2a)
and (E12), respectively, ylelds
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3] i)
‘ d at’ [-d oft,n)dn
W(ﬁl:'ﬂl) = = f‘f‘gg— region B
1 '\(t £ \%m Ny -1
Glny) £(g) VT
(E14a)
gl ' 'ﬂl
= . M d n) region B
Z R (g-m2 o
G(n;) £(¢)
(E14)

By comparison with equation (10) of reference 13, equation
(E14) may be interpreted as the upwash velocity w due to a
glven distribution of doublets (or of vorticity) over a prescribed
area. The area of integration is shown cross-hatched in figure 11
for the same two configurations (a) and (b) considered in figure 9.
Note that the regions A' and B', which 1lie in the zone that influences
the point E,l,nl, are not included. This result lmplies that for

the polnt El,nl the integral of the doublets in A' exactly cancels

the integral of the doublets in B'. The situation here with respect
to doublets presente an interesting parallel to Evvard's original
discovery wlth respect to sources in connection with his membrane
concept. (See reference 21.)

Equation (El4a) is an alternate form of equation (El4) that
may yleld simpler integrations in some cases. Note that the
(finite part) operation is avoided. Similar considerations apply
to the alternate forms (El2a) and (E12), (El3a) and (E13).

A particularly simple result for Ow/Ox can be obtained
when the Kubtta condition is imposed. Thus, apply to equation (E14)
a procedure anslogous to that by which O9/dx is obtained from
® in reference 5. The result 1s
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(81 il

S
N
]
gl=
~

yee

e o,
St Jyte
™

[aV)

~ |
(R Y
3

Ve
N:!

M ®(€,n)dn
R ORI
. |

- M ' CP(gJT])d-T]
a\M ¢ ("1)> (£,-8)3/2 (np-1)3/2

be

The first line Integral vanishes because ® = 0. along ab, and
the second line integral may be expressed differently:

o

A
8=

Ui
at u(€,q)dn
(21_5)3:2 J(g) (711"1)3 2
£

G(ny)

a(Ey)

M dny | @(E,,m)dn
(e, [att) ] ¥*
£(€,)

(E15)

where ¢, Eg(nl)-
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The line integral may be put in more convenient form by means
of en integration by parts. The final result may be written

E’l Tll
v _ _ M at £,1)a
EE%[ T 4x (g E)372 ? 392
_ 1" 19.-1)
_dgz G(Ez)
any Bu+tv
+ — (E186)
2 (8, ~£,) 0/ 2 e Vel
2

The line integral is the same as the one in equation (E11l). Here
again, then, the line integral vanishes if the RKutta condition is
imposed along the line £ = G(g).
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Figure 1. - Sweptback wing showing basic delta-wing load
distribution along section A-A and approximate cancellation
of this load behind wing by superposition of special flows.
Special flows are plotted with reversed sign. Cross-
hatched areas represent induced changes in loading ahead

" of tralling edge.
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Figure 2. - Flows used for cancellation of 1ift behind trailing
edge of sweptback wing,I, II, IITI, and IV, and related flows
I+, 1I1*, III*', and IV?.




54

Figure 3., - Data for flow I',

Figure 4., - Data for flow II'.
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Figure 5. = Superposition of elementary source-sheet
sectors to build up flow I. (Schematic)
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w=0 reglons (n < 0 < 1) of flows of figure 2.
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sectors to builld up flow IITI. (Schematic.)
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(b) Case (b).

Figure 9, = Data for Goodman-Mirels generalized cancellation
flow,
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Figure 10. - Scheme for interchange of order of integraﬁion in
equation (E8).
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(b) Case (b).

Figure 1ll. - Area of integration for doublets of equation
(E14), Cases of figure 9.
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